The Vaccine Refrigerator

By Team Orange A

Overview/Background

- Over 4.3 Million¹ deaths from vaccinepreventable diseases each year
- Current Cold Chain methods/materials out-ofdate, in disrepair
- Limited funds for equipment and personnel-UNICEF 90% of vaccine purchases

Current 'Cold Carriers'

Pros:

- No power source needed
- Portable
- Inexpensive

Cons:

- Insufficient temperature control
- Cannot generate cold
- Limited "cold-life"

Pros: Presigulated temegrattees temestates old

• Redatively tionatiless

The Cold Chain

Specific Customer Needs

Customer Needs	Design Attributes	Engineering Specs
Longer outreach sessions	Longer cold life	>2 days within 2-8 C range
Affordable by NGOs	Inexpensive	Costs less than \$150
Comfortable to carry	One person can carry easily	Backpack form (hands-free), <50 lbs
Doesn't need power grid	powered by alternate means	human/IC-engine powered
	Can accommodate different	
Flexible for different vaccines	vial sizes	Can fit all 16 vial standard sizes
Doesn't freeze or heat	Can keep vaccines in viable	
up vaccines	temp. range	Maintains 2-8 C range
Can treat many villages in	Can accommodate large	
a single trip	number of doses	capacity of ~1500 doses

The Cold Chain

Introducing the Vacc-Pack

AMARINE STREET

The Vacc-Pack

- Human-powered
- Well-insulated
- Ample room for vaccines
- Easy to carry
- Monitored temperature

- Motor-less
- Inexpensive
- Easy to manufacture
- Satisfies WHO specs
- Minimal moving parts

The Compressor

Temperature Monitor Circuit

Why not an IC motor?

- Gasoline/oil not "renewable" resource
- Additional moving parts- decrease durability

BUT: This is *definitely* a feasible alternative