

Market and Customer Needs

2 billion people worldwide without access to electricity

Car Battery Usage

- Zimbabwe 14.5% of rural households ~230,000 batteries
 - average monthly expenditure: \$5-\$15
 - charging stations 7-10 km away
- Sri Lanka 50% of rural households ~300,000 batteries
 - needs recharging twice a month
 - charging stations 6 km away

Design Goals

Small: less than 1 m³ in size

Reliable: able to run at low wind speeds of 5-10 m/s

- Able to be manufactured locally: using local materials, tools and labor, easy technology transfer
- Low maintenance: able to withstand climate, can be maintained by local residents
- **Cheap:** less than \$50 per turbine COGS

Yellow B

Lenz Turbine

- Three blade vertical axis wind turbine: more efficient than most VAWT
- In 6 m/s wind
- → turbine achieves 240 rpm
- → alternator outputs 1.5A at 14V
- → charges a 12V car battery in 8 hours

Learned from Sketch Model

•Easy to manufacture and assemble

•More knowledge to optimize the process

•Reasonable in size and appearance

•Could see where improvement Lenz suggested could be applied

Implementation

Private company concessions -Argentina: aims to electrify 1.4 million rural residents

- Cape Verde

Micro-enterprises -Peru: subsidized by Ministry of Energy and Mines

Conclusion

Inexpensive, clean and local power

•A simple and feasible technology

•Can be reproduced locally in developing countries

Wind Powered Battery Charger

Yellow B