

D	r	\sim	h	I		r	r	۱. ۱
Γ.		U	U	I.	C	I.	ι.	

Stan's Dilemma

CYCL	05
------	----

_				÷	
D	r	0	h	L	em
	I.	U	U	l	CIII

Product

Market

Oil Filters and the Environment

D	r	\frown	b	L	n	h	
ι.		U	D	1		н.	

Oil Filters and the Environment

Stan's Dilemma

D	r		h	I		m	
ι.		U	U	I.	C		

How Cyclos Works

D	r	\cap	h	Ī.	Δ	r	r	1
		U	U				١.	

Superior Performance

Problem

Product

Market

Summary

10

The Market

Competition

Business Model

Summary

 \bigcirc 5

D	r	\cap	h	Ī.	r	r	1
		U	U	L.		L.	

Thank you

Prof. Wallace **Bobby Dyer** Matt Duplessie

Prof. Vandiver

David Custer

Ethan Crumlin

Pappalardo Staff

Ray Magliozzi and Craig Lavalle of Good **News Garage**

Problem

Supplementary Materials

Environmental Impact

- Over **450 million** oil filters are manufactured each year in the US.
- **80%** disposed of in landfills.
- EPA requires that oil filters are 70% drained for recycling
- Wastes **25.5 million gallons** of recyclable oil and **230 thousand tons** of steel.
- 8 oz of oil can contaminate **62,000 gallons** of drinking water, enough to fill a community swimming pool.
- 42 gallons of crude oil to produce **2.5 quarts** of lubricant; 1 gallon of used oil to produce the same amount.

D	r	\sim	h	L		r	r	1	
	I	U	U	1	C			I.	

Why is the Cyclos more efficient?

- Spinning around the axis → Shorter distance for the oil to travel
- Optimal hole locations and puncturing method

Fast and Efficient Drainage

Problem

Time: log(hours)

Punching Tests

Problem

Product

Market

Summary

20

Manufacturing Cost: \$280

Component	Cost								
	Μ	aterials	Pro	cessing	Ass	sembly		Total	
PUNCHING	\$	7.50	\$	0.45	\$	0.50	\$	8.45	
GRIPPING/SPINNING	\$	40.00	\$	11.00	\$	2.60	\$	53.60	
STRUCTURE	\$	54.53	\$	22.51	\$	18.61	\$	99.15	
CONTROLS	\$	27.75	\$	1.00	\$	1.20	\$	29.95	
MISC	\$	4.50	\$	5.00	\$	1.00	\$	10.50	
Direct Costs	\$	129.78	\$	39.96	\$	23.91	\$	201.65	
Overhead	\$	51.91	\$	15.98	\$	9.56	\$	80.66	
Total Cost	\$:	L81.69	\$	55.94	\$	33.47	\$2	282.31	

Manufacturing costs based on production of 1000 machines a year

10 year product life; 400,000 small to medium repair shops;
25% market share

Problem

Summary

Benefits for Clients

- Financial
 - Lower filter pickup costs for non-hazardous material
 - Value of Oil
- Environmental
 - Reduce oil pollution
 - Recycle steel
- Other
 - Reduce disposal time
 - Avoid fines

Customers

- Repair shop contacts
 - Sullivan Tires and Good News Garage burn used oil for heat
 - Others have recycling companies that pick up used oil
 - This product would leave our garage less vulnerable to EPA fines for improper disposal of hazardous waster.

-Ray Magliozzi, Good News Garage

- Recycling center contacts:
 - "Very cool machine."
 - Peter Pasquier, Director of Waste Services, Marketing at Safety-Kleen
 - "…there is a need for this product…to capture a higher percentage of the oil and do it quicker."

-Wayne, SaveThatStuff

D	r	\cap	h	I		r	r	1	
		U	U	I.	C		١.		