

MOCKUP REVIEW

Preliminary Customer Contract

Customer Need	Attribute	Specification
Accurately Removes Genetically Deformed Beans	Accuracy	80 % of target defects removed from good beans
Low Power	Power	100-150w
Receive 150 lbs of beans at once	Capacity	Handle 150 lbs
Easy loading and unloading for a 5 foot tall man	Size	Height: less than 4 ft
Sorts 150 lbs/hour	Sorting Capability	150/hr throughput
Must be affordable for small farmers	Price	\$300-500

Critical Issue: Sorting Good beans from defective ones

Density Sorting

•DRUM SORTING

•VIBRATING TABLE

•WINNOWING

Drum Sorting Testing results: All beans stick to side of walls <no sorting>

Next phase:

Drum with MUCH BIGGER diameter

Drum Sorting

Vibrating Table

Vibrating Table

Testing results:

Peaberries sort from rest with >95% accuracy

Power: < 100W

Modification:

Different surfaces Different motor orientations

Drum Sorting

Vibrating Table

Winnowing *Testing results:*

Some bad beans in the good beans *Modifications:*

> Bean feeder setup Fan angle Barrier height Barrier distance

Power constraints on fans

Drum Sorting

Vibrating Table

Key Risk Assessed

Accuracy

-88% defective beans sorted out

-Target Bin: 91% good beans

Drum Sorting

Vibrating Table

Power Analysis for Mock up Experiment

Large Winnowing Fan

 $3.8A \cdot 120V = 456W$ steady electrical power draw

Small Winnowing Fan

 $0.8A \cdot 120V = 96W$ steady electrical power draw

Table Vibrator

 $0.9A \cdot 120V = 108W$ steady electrical power draw

~100W

Also note: Mechanical Input Power < Electrical Power Draw

Conclusion

Feasible

Valid Alternative

