Smart Shower

Yellow A Mock Up Presentation October 18th, 2007

Problem

Water waste due to shower habits
Old Showers: 40 gallons/shower
New Showers: 25 gallons/shower
\$60-\$120/year on water for showers
About 10,000,000 J/shower

Solution

- Saving water by reducing the volume flow rate when high volume is not required for the user's showering routine.
 - Pressure/Volume Regulation
 - User Controlled
- About 10% less water used
- \$2/year in savings per person
- 1,000,000J/shower saved

User Controlled Pressure System with Microphone Sensor

Critical Issues and Risks

- Individual Shower Habits
- User Preferences
- Consumer Reluctance to Change

Customer Interviews

65 interviews

□ 52% female, 48% male

Customer Insights

Concerns

- Shower Warmth
- Rinsing Pressure
- Sensor Reliability and Maintenance

Conclusions

- People want to save water
- Quite concerned with losing shower quality
- Considerable variability in customer responses

Design Concept Concerns

Challenges

- Electrical Hazard
- Shower System Integration

Proposed Solutions

- Low Voltage Wireless
- Multiple Modules for Input

Sensor Type	Proposed Detection
Bump	Soap usage
Infrared (IR)	Position
Ultrasound	Position
Light	Position
Sound	User command

Design Concept Concerns

Challenges

- Electrical Hazard
- Shower System
 Integration
- Effective Use of Sensors

Proposed Solutions

- Low Voltage Wireless
- Multiple Modules for Input
- Customer Research

Next Steps

Aesthetics

- Wireless communications
- Multiple sensor integration
- Decrease low flow from 20% by more efficiently dissipating heat (steam?)
- Customer feedback and testing