

water purifying devices is a major problem

- 1.2 billion people in developing countries lack access to safe drinking water
 - No water available
 - Available water is unsafe to drink

http://www.africanwellfund.org/

Boiling is the most common way of purifying water; this is a major waste of energy

• Freshly cut "green" wood fuel has a

30 million people drink 1 quart boiled water a day

900 million lbs wood per year

Market

Marsetall villages, schools or communities

day

www.nickbuxton.info/

Hand powered UV lamp eliminates need for boiling water

- Filter cleans most sediment and chemicals from water
 - Still deciding on filter type (demo)
- Hand crank powers UV lamp to kill viruses and bacteria
 - Need to have 16,000 µws/cm²
 - Degrades DNA in virus and bacteria
- Valve restricts water flow unless UV light is powered
 - Required to ensure all water is UV exposed
 - Solenoid (demo)

30 watts from UV light

UV effectiveness depends on light intensity and exposure time

Power intensity at R
$$I_p(r) = \frac{W}{2\pi RL}$$

Time water flows by light $t = \frac{L}{v}$
 $I(r) = I_p(r) * t = \frac{W}{2\pi RL} \cdot \frac{L\rho \pi R^2}{\dot{m}} = \frac{WR\rho}{2\dot{m}}$

Calculations:

 $\frac{\text{Conclusion:}}{|(\mathbf{r})=(7.006-5\times2017)=14,200 \text{ h}\text{W}\text{s}\text{cm}^2}$

(r)=20,300 µW *s/cm²

Moving forward we need to focus on safety, design, and solidifying a contact

<u>Safety</u>

- Project will require independent water testing
 - Kits and laboratories available

<u>Design</u>

• Optimal cranking and water storage design

<u>Contact</u>

- D-lab may be available to work with
- Contact: Susan Murcott
 - Working with MIT environmental engineering masters students
 - Would focus the project on Ghana

Conclusion

- Aquatron is feasible, low cost and is greatly needed in the third world countries.
- The feature of hand-crank powered energy eliminate the need for other sources of energy for the third world countries.
- The use of UV light to purify water is energy friendly and safe.
- The Aquatron will reduce wood burning and improve quality of life

UV works by degrading the DNA in viruses and bacteria to prevent reproduction

- Point disinfection
- 16,000 µws/cm² ⁽²⁾

http://www.aquatechnology.net/Ultraviolet systems.html

(2) http://www.dwc-water.com/technologien/uv-technologie/index.html

Ultraviolet Dosage Required For 99.9% Destruction of Various Organisms (µW-s/cm² at 254 nm)

Bacteria		Mold Spores	
Bacillus anthracis	8,700	Aspergillus flavus	99,000
B. enteritidis	7,600	Aspergillus glaucus	88,000
B. Megatherium sp. (vegatative)	2,500	Aspergillus niger	330,000
B. Megatherium sp. (spores)	52,000	Mucor racemosus A	35,200
B. paratyphosus	6,100	Mucor racemosus B	35,200
B. subtilis (vegatative)	11,000	Oospora lactis	11,000
B. subtilis (spores)	58,000	Penicillium digitatum	88,000
Clostridium tetani	22,000	Penicillium expansum	22,000
Corynebacterium diphtheria	6,500	Penicillium roqueforti	26,400
Eberthella typhosa	4,100	Rhizopus nigricans	220,000
Escherichia coli	7,000		
Leptospira interrogans	6,000		
Micrococcus candidus	12,300	Algae / Protozoa	
Micrococcus sphaeroides	15,400	Chlorella vulgaris (algae)	22,000
Mycobacterium tuberculosis	10,000	Nematode eggs	92,000
Neisseria catarrhalis	8,500	Paramecium	200,000
Phytomonas tumefaciens	8,500		
Proteus vulgaris	6,600		
Pseudomonas aeruginosa	10,500	Virus	
Pseudomonas fluorescens	6,600	Bacteriophage (E. coli)	6,600
Salmonella enteritidis	7,600	Hepatitis virus	8,000
Salmonella paratyphi	6,100	Influenza virus	6,600
Salmonella typhimurium	15,200	Polio virus	6,000
Salmonella typhosa (Typhoid)	6,000	Rotavirus	24,000
Sarcina lutea	26,400	Tobacco mosaic	440,000
Serratia marcescens	6,200		
Shigella dysenteriae (Dysentery)	4,200		
Shigella paradysenteriae	3,400		
Spirillum rubrum	6,160	Yeast	
Staphylococcus albus	5,720	Baker's yeast	8,800
Staphylococcus aureus	6,600	Brewer's yeast	6,600
Streptococcus hemolyticus	5,500	Common yeast cake	13,200
Streptococcus lactis	8,800	Saccharomyces cerevisiae	13,200
Streptococcus viridans	3,800	Saccharomyces ellipsoideus	13,200
Vibrio cholerae	6,500	Saccharomyces sp.	17,600

Figure 2. Dosage Requirements to destroy various common microorganisms.

More information about slow sand filtration

Slow sand filtration may be a viable way for the aquatron to filter water

- Carbon water filter requires large pressure difference
 - Gravity fed usually are hung to gain potential energy
- Slow sand filtration
 - Simple and effective⁽¹⁾

The Aquatron uses mechanical power to The Alquation of the transformed transformed to the transformed to the

• Movable

conscious then other devices

Other Devices

Aquatron

• Uses only filtering

used