

Flitter:

The Foldable Litter

Flitter in Action

Customer Need

- In U.S. annually: 139 climbing accidents, 276 persons involved,
 117 injuries, 23 fatalities
- 84 Mountain Rescue Teams in the US, 20+ personnel / team

"I've often had to go out with a litter rescue team with a skeleton crew of just myself and two others. Naturally, a rigid, full size litter becomes a burden."

-Todd Remaley, Head Park Ranger Appalachian Trail, National Parks and Services 10/14/2009

Pink B - Mockup Source: American Alpine Club

Product Contract

• **Product Description:** A modular rescue basket

• Intended Customers: Trained mountain rescue team

• Market: Emergency rescue equipment

Customer Needs	Product Attributes	EngineeringSpecs
Can be easily carried	Weight	< 20 lbs
Can disassembled into pieces	Modularity	> 4 pieces
User's freedom of movement	Module Size	Each module can be carried as a backpack
Rigid support for heavy weight	Rigidity of backboard	Withstand at least 220lbs (1 Meeker)
Competitive Price	Cost	< \$600

Risk 1: Lack of Rigidity

- Backboard buckling
 Joint Separation

Risk 2: Weight Inhibiting Rescuer Mobility

- Heavier than competitive models
 - Mockup: 43lbs

Pink B - Mockup

- Modular weight: 25lb, 9lb, 9lb
- Handlebars on all sides

Evolution of Design

Stress Calculations

100 kg (220lb) Load:

Max. Stress as % of Yield Stress

- Plywood: 2%

- Honeycomb: 58%

$$M = \frac{wL^{2}}{8}$$

$$\sigma_{core} = \frac{Mh_{2}E_{2}}{E_{1}I_{1} + E_{2}I_{2}}$$

$$\sigma_{plywood} = \frac{M(h_{1} + h_{2})E_{1}}{E_{1}I_{1} + E_{2}I_{2}}$$

